Willingness-to-pay Prediction Based on Empirical Mode Decomposition
نویسندگان
چکیده
Long-term prediction of customer preferences is becoming essential for effective product portfolio design in broad industrial sectors such as automotive, aerospace, consumer electronics, where typical concept-to-release times are long (24-60 months). However, nonlinear and nonstationary evolutions of customer preferences hinder accurate prediction of the futures of customer preferences. This paper presents a two-step prediction approach based on Empirical Mode Decomposition (EMD) to forecast customer preferences over extended time-horizons. The advantage of EMD is that this method can be used to decompose a nonstationary time series into a finite number of components called intrinsic mode function (IMF). This property helps in isolation of trend and noise components (detrending and denoising) from a nonstationary process. However the presence of edge artifacts limits the use of EMD for prediction applications. A key aspect of our approach is that it takes advantage of the linear phase property of Hilbert-Huang Transform (HHT) to address this artifact, thus extend EMD for long-term prediction applications. The empirical results suggest that EMD based prediction can significantly improve prediction accuracy in terms of RMSE (36%) and R 2 (30%) for long-term prediction, compared to classical and advanced time series techniques.
منابع مشابه
A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملBlind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm
Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملEmpirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation
This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system. In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to sel...
متن کاملA Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle
Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...
متن کامل